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Abstract

We investigate the characteristics of evolutionarily stable self-confidence bias that
is non-Bayesian belief of a single decision maker. It is known that whenever a decision
maker is risk averse, he has the self-confidence bias for his own ability of his self-
reproduction. We show that the size of the bias is invariant in affine transformations
in the utility function, which indicates that the bias has a similar property to expected
utility hypothesis. Moreover, introducing fixed costs into self-reproduction process,
we investigate the effects of time horizontal perspectives on the bias. We find that
the size of the bias of a decision maker with CRRA utility function tends to increase
in the short run. In contrast, the fixed cost for self-reproduction is irrelevant with
the size of the bias for another type decision maker with CARA utility function.
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1 Introduction

In the canonical models of Bayesian games each player with private information correctly
knows his own type. If we recognize the implications of game theory as normative sugges-
tions, the complete knowledge about his own type is reasonable assumption. On the other
hand, if we turn to the empirical aspect of game theory, each player’s knowledge about his
own type would not necessarily be correct. Players’ deduction about his own type might
not necessarily be correct.

Möbius et al. (2012) is an experimental study and finds self-confidence bias of subjects
about their own ability. Zhang (2013) considers a following evolutionary scenario in which
a single agent decides his effort level for self-reproduction and that justifies such bias
successfully. Before the agent’s decision, Nature assigns to the agent his type of ability for
self-reproduction according to a probability distribution over the set of his own types. The
set of his own types consists of high type and low type. The agent knows this probability
distribution. Unlike the usual game-theoretic model, the agent can not observe directly
this true type assigned by Nature. A signal about his own type is generated through a
mechanism that is a probability distribution conditional on that true type. The agent is
assumed to be able to observe the signal and knows the conditional probability distribution
over the set of types. For example GPA scoring might be such a mechanism that generates
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a noisy signal about each student’s ability. Given the signal, the agent forms a belief about
his own ability.

With this belief, the agent decides the effort level for self-reproduction. In order to
survive natural selection, the agent chooses the effort level so that his expected material
payoff is maximized. This is as if Nature chooses the effort level that maximizes the
expected fitness of a risk neutral agent based on a Bayesian belief about the agent’s ability
which is consistent with the two probability distributions above generating the signals.
However the real agent has his utility function that is not necessarily risk neutral. If the
agent had a risk averse utility function then the effort level chosen to maximize its expected
utility might be different from the effort level that maximize the material payoff with the
Bayesian belief. In such a case the belief about the ability for self-reproduction should be
adjusted to a non-Bayesian belief by the agent himself to attain the optimal effort chosen
by Nature.

We, first, examine the effect of affine transformations in the utility function on the
self-confidence bias because the transformation is one of the key concepts for the expected
utility hypothesis. Second, we turn to investigate the effects of time horizontal perspectives
on the bias and its applicability of our argument to standard economic theory. The self-
reproduction’s cost might depend on the time horizon under consideration, that is, the
short-run or the long run. In the short-run the agent might bears the fixed costs for his
self-reproduction. We introduce the fixed cost for self-reproduction into the model of Zhang
(2013) and investigate its impact on the self-confidence bias. 1

Remaining part of this paper is organized as follows. Section 2 presents Zhang (2013)
equipped with a fixed cost for self-reproduction. In Section 3 we show that affine trans-
formations has no effect on the size of the bias and depending on types of risk averse,
i.e., CRRA or CARA, the fixed cost has sharply different impacts on self-confidence bias.
Section 4 is our concluding remarks.

2 Model

2.1 A system of generating signals

Let T = {H,L} be the set of possible types of an agent. Each type represents his ability
for self-production. At the beginning Nature picks up a type H (L) of the agent with
probability μ0 (resp.1 − μ0). We suppose that the agent can not directly observe his
own true type t ∈ T , but observe a signal s ∈ T . This signal is generated through a
publicly known conditional probabilities p1 = p(s = H|t = H) and p2 = p(s = H|t = L).
Combining the knowledge about the prior μ0, the conditional probabilities p1, p2 above, and
the observed signal s ∈ T , the agent could form his belief μ that his true type is H. One
of possible beliefs is the Bayesian posterior belief. Let μB denote the Bayesian posterior
belief that his true type is H. Using logit(·), we can compactly write down all information
about the Bayesian belief μB as follows;

logit(μB) = logit(μ0) + 1s=HλH + 1s=LλL,

where logit(μ) = log( μ
1−μ

), λH = log(p1
p2
), λL = log(1−p1

1−p2
) and each 1s∈T is an indicator

1Suzuki (2020) points out that this introduction of fixed costs increases the self-confidence bias in some
case with a numerical example. Our paper summarizes some of the earlier study of Fukuzumi (2020) , one
of our paper’s authors, that analyzes the relationship between fixed costs and the size of the bias, along
with the other properties of the bias found in our paper.
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Figure 1: The system of generating signals and the Bayesian posterior beliefs derived from
it.

function of the signal s ∈ T of which value is 1 or 0. Figure 1 illustrates this system
generating the signals and the way to form the Bayesian posterior beliefs in the system.

2.2 Evolutionarily stable effort level

We consider a situation in which the agent with a belief about his own type chooses an effort
level to produce his own fitness i.e., material payoff. Let a ∈ R++ denote an effort level
chosen by the agent. We assume a production functions for producing the material payoff
f(a, t) ∈ R++ such that f(a,H) > f(a, L) for each effort level a ∈ R++ and f ′ > 0, f ′′ < 0.
Moreover we assume the cost function for producing the material payoff C(a) ≡ c(a) + F
in which c(a) ∈ R++ is the variable cost such that c′ > 0, c′′ > 0 and F ∈ R+ denotes the
fixed cost. Nature selects the optimal level of action a∗ maximizing his fitness uN(a) under
the Bayesian belief μB so that

a∗ ∈ arg max
a

uN(a) = μB(f(a,H)− C(a)) + (1− μB)(f(a, L)− C(a)).

Let fa denote
∂f
∂a
. The first order condition for the Nature’s optimization problem above

becomes

μB

1− μB
=

∣
∣ fa(a

∗, L)− c′(a∗)
fa(a∗, H)− c′(a∗)

∣
∣ (1)

where a∗ is the optimal level of action under the Bayesian posterior belief μB.

2.3 Evolutionarily stable non-Bayesian belief μ∗

Whereas Nature maximizes the agent’s fitness, we suppose that the agent maximizes his
expected utility uA(a) with some belief μ. This belief μ is regarded as a subjective proba-
bility that the agent believes that his own type is H and it might not necessarily coincide
with the Bayesian belief μB. We assume that the agent has a von Neumann-Morgenstern
function u : R → R with u′′ < 0, that is, the agent has risk averse preferences. The

3



optimization problem for the agent is given by

max
a

uA(a) = μu(f(a,H)− C(a)) + (1− μ)u(f(a, L)− C(a)).

The first order condition of this problem implies

μ

1− μ
=

∣
∣ fa(a, L)− c′(a)
fa(a,H)− c′(a)

∣
∣ · u

′(f(a, L)− c(a)− F )

u′(f(a,H)− c(a)− F )
. (2)

Given the optimal level of effort a∗ determined implicitly in (1), the agent is assumed
to adjust his belief μ to be consistent with the condition (2). Substituting the optimal level
of effort a∗ into the condition (2), we get the adjusted belief μ∗ satisfying

μ∗

1− μ∗ =
∣
∣ fa(a

∗, L)− c′(a∗)
fa(a∗, H)− c′(a∗)

∣
∣ · u

′(f(a∗, L)− c(a∗)− F )

u′(f(a∗, H)− c(a∗)− F )
. (3)

From (2) and (3), we get the logit representation of difference between the adjusted
belief μ∗ and the Bayesian belief μB as follows.

logit(μ∗)− logit(μB) = log
[ u′(f(a∗, L)− c(a∗)− F )

u′(f(a∗, H)− c(a∗)− F )

]
.

Since u′′ < 0 and f(a∗, H) > f(a∗, L), we have u′(f(a∗,L)−c(a∗)−F )
u′(f(a∗,H)−c(a∗)−F )

> 1, that is, logit(μ∗) −
logit(μB) > 0. We see that risk averse agents tend to have self-confidence bias (Zhang,

2013). The amount of log
[ u′(f(a∗,L)−c(a∗)−F )
u′(f(a∗,H)−c(a∗)−F )

]
is called the size of self-confidence bias for a

fixed cost F and denoted by B(F ).

3 Analysis

In expected utility hypothesis, affine transformations to utility functions have no effect on
decision makers’ behavior. We investigate whether or not the transformation has any effect
on the self-confidence bias. Let U(α, β;F ) be the expected value of an affine transformed
utility function αu(·) + β (α, β ∈ R, α > 0) with a belief μ. The agent’s optimal behavior
solves

max
a

U(α, β;F ) = μ{αu(f(a,H)− C(a)) + β}+ (1− μ){αu(f(a, L)− C(a)) + β}.

The first order condition of this problem implies

μ

1− μ
=

∣
∣ fa(a, L)− c′(a)
fa(a,H)− c′(a)

∣
∣ · αu

′(f(a, L)− c(a)− F )

αu′(f(a,H)− c(a)− F )

=
∣
∣ fa(a, L)− c′(a)
fa(a,H)− c′(a)

∣
∣ · u

′(f(a, L)− c(a)− F )

u′(f(a,H)− c(a)− F )
. (2)

Note that this result is the same as that in Section 2.3. Substitute the optimal action a∗

under the Bayesian posterior belief μB, we get the non-Bayesian belief μ∗ which is also the
sames as that in Section 2.3. Thus the affine transformation of utility function does not
affect the size of the self-cofidence bias B(F ). In the following we analyze the size of bias
without taking affine tranformations into account.
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The size of self-confidence biasB(F ) is a function of the fixed cost F for self-reproduction.
We show that depending on the type of risk aversion the impact of this fixed cost on the
size of self-confidence bias is shaply different. We consider two typical classes of risk averse
utility functions. One is the constant relative risk aversion (CRRA) utility function and
the other is the constant absolute risk aversion (CARA) one.

Observation 1. For a CRRA function u(x) = x1−ρ/(1−ρ), ρ ≥ 1, its size of self-confidence
bias B(F ) is an increasing function of F .

In this case B(F ) = ρ log
∣
∣f(a∗,H)−c(a∗)−F
f(a∗,L)−c(a∗)−F

∣
∣. Let b(F ) ≡ f(a∗,H)−c(a∗)−F

f(a∗,L)−c(a∗)−F
. Since ∂b(F )

∂F
=

−(f(a,L)−c(a)−F )+(f(a,H)−c(a∗)−F )
(f(a∗,L)−c(a∗)−F )2

> 0, we get this fact. �
We show that this finding holds more generally as follows.

Theorem 1. If the agent’s utility function is the CRRA, then the size of self-confidence
bias B(F ) is strictly increasing in the fixed cost F for self-reproduction.

Proof. Note thatB(F ) = log
[
u′(f(a∗,L)−c(a∗)−F )
u′(f(a∗,H)−c(a∗)−F )

]
, Define b(F ) to be a function u′(f(a∗,L)−c(a∗)−F )

u′(f(a∗,H)−c(a∗)−F )

of F . From (1), a∗ does not depend on F i.e., ∂a∗
∂F

≡ 0. So the following calculation becomes
simple.

∂b(F )
∂F

= −u′′(f(a∗,L)−c(a∗)−F )u′(f(a∗,H)−c(a∗)−F )+u′′(f(a∗,H)−c(a∗)−F )u′(f(a∗,L)−c(a∗)−F )
(u′(f(a∗,H)−c(a∗)−F ))2

=
u′′(f(a∗, L)− c(a∗)− F )

u′(f(a∗, H)− c(a∗)− F )
+

u′′(f(a∗, H)− c(a∗)− F )

u′(f(a∗, H)− c(a∗)− F )
· u

′(f(a∗, L)− c(a∗)− F )

u′(f(a∗, H)− c(a∗)− F )

=
u′′(f(a∗, L)− c(a∗)− F )

u′(f(a∗, H)− c(a∗)− F )
{−1 +

u′′(f(a∗, H)− c(a∗)− F )

u′′(f(a∗, L)− c(a∗)− F )
· u

′(f(a∗, L)− c(a∗)− F )

u′(f(a∗, H)− c(a∗)− F )
}.

Since u′ > 0 and u′′ < 0, u′′(f(a∗,L)−c(a∗)−F )
u′(f(a∗,H)−c(a∗)−F )

< 0.

Our remaining task for determining the sign of ∂b
∂F

is to check the sign of the second
half of the above formula (4). By arranging the second half of the above formula, we get

−1 +
u′′(f(a∗, H)− c(a∗)− F )

u′′(f(a∗, L)− c(a∗)− F )
· u

′(f(a∗, L)− c(a∗)− F )

u′(f(a∗, H)− c(a∗)− F )

= −1 +
[ u′(f(a∗, L)− c(a∗)− F )

u′′(f(a∗, L)− c(a∗)− F )
· 1

f(a∗, L)− c(a∗)− F

] · [u
′′(f(a∗, H)− c(a∗)− F )

u′(f(a∗, H)− c(a∗)− F )
·

(f(a∗, H)− c(a∗)− F )
] · f(a

∗, L)− c(a∗)− F

f(a∗, H)− c(a∗)− F
. (4)

Both ingredients of u′(f(a∗,L)−c(a∗)−F )
u′′(f(a∗,L)−c(a∗)−F )

· 1
f(a∗,L)−c(a∗)−F

and
[u′′(f(a∗,H)−c(a∗)−F )
u′(f(a∗,H)−c(a∗)−F )

·(f(a∗, H)−
c(a∗) − F )

]
of the second half of (4) are the coefficient of relative risk aversion −xu′′(x)

u′(x) of
this agent’s utility function. Let ρ be the constant value of the coefficient of absolute
risk aversion −u′′(x)

u′(x) . Substituting ρ into the formula (4), we get a formula −1 + 1
ρ
· ρ ·

f(a∗,L)−c(a∗)−F
f(a∗,H)−c(a∗)−F

. Since we have assumed that f(a,H) > f(a, L) for each effort level a ∈ R++,
1
ρ
· ρ · f(a∗,L)−c(a∗)−F

f(a∗,H)−c(a∗)−F
< 1, namely −1 + 1

ρ
· ρ · f(a∗,L)−c(a∗)−F

f(a∗,H)−c(a∗)−F
< 0.

From u′′(f(a∗,L)−c(a∗)−F )
u′(f(a∗,H)−c(a∗)−F )

< 0 and −1 + u′′(f(a∗,H)−c(a∗)−F )
u′′(f(a∗,L)−c(a∗)−F )

· u′(f(a∗,L)−c(a∗)−F )
u′(f(a∗,H)−c(a∗)−F )

< 0, we get
∂b(F )
∂F

> 0 for each F . �
Observation 2. For a CARA function u(x) = K − exp(−τx), τ ≥ 0, its size of self-
confidence baias B(F ) is irrelevant with F .
In this case B(F ) = α[f(a∗, H)− f(a∗, L)]. �
This finding of irrelevance holds more generally as follows.

Theorem 2. If the agent’s utility function is CARA, then the size of self-confidence bias
B(F ) is irrelevant with the level of fixed cost F for self-reproduction.

5



Proof. Note thatB(F ) = log
[ u′(f(a∗,L)−c(a∗)−F )
u′(f(a∗,H)−c(a∗)−F )

]
Define b(F ) to be a function u′(f(a∗,L)−c(a∗)−F )

u′(f(a∗,H)−c(a∗)−F )

of F . We check the sign of ∂b
∂F

. From (1), a∗ does not depend on F i.e., ∂a∗
∂F

≡ 0. So the
following calculation becomes simple.

∂b(F )

∂F
=

u′′(f(a∗, L)− c(a∗)− F )

u′(f(a∗, H)− c(a∗)− F )
{−1+

u′′(f(a∗, H)− c(a∗)− F )

u′′(f(a∗, L)− c(a∗)− F )
· u

′(f(a∗, L)− c(a∗)− F )

u′(f(a∗, H)− c(a∗)− F )
}.

To check the sign of ∂b(F )
∂F

, we focus on the sign of the second half of the above formula.
By arranging this part, we have

−1+u′′(f(a∗,H)−c(a∗)−F )
u′′(f(a∗,L)−c(a∗)−F )

· u′(f(a∗,L)−c(a∗)−F )
u′(f(a∗,H)−c(a∗)−F )

= −1+
[
u′′(f(a∗,H)−c(a∗)−F )
u′(f(a∗,H)−c(a∗)−F )

]·[ u′(f(a∗,L)−c(a∗)−F )
u′′(f(a∗,L)−c(a∗)−F )

]
.

Since the agent’s utility function is CARA, let τ be the constant value of the coefficient of
absolute risk aversion −u′′(x)

u′(x) . Substituting τ to that arranged formula, we get −1+τ · 1
τ
= 0.

That is, ∂b(F )
∂F

= 0. �

4 Concluding remarks

We have shown that the evolutionarily stable self-confidence bias is invariant in the affine
transformation. This fact indicates that this non-Bayesian decision theory is partly similar
to expected utility hypothesis. Furthermore, we have found the fact that whenever a CRRA
decision maker’s bias tends to increase in the short-run. This fact might corresponds to
daily feelings in which bounded rational behaviors are likely to be seen in the short-run.

The agent modifies his belief from Bayesian one to attain the optimal effort level chosen
by Nature. This scenario is partly similar to the approach of the preference evolution
models in which preferences are adjusted to maximize the material payoff but the beliefs
are not (Samuelson, 2001). Which of the preferences and beliefs are more strongly subject
to evolutionary pressure? This might be one of most interesting topics for future research.
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